On join product and local antimagic chromatic number of regular graphs

نویسندگان

چکیده

Let $$G = (V,E)$$ be a connected simple graph of order p and size q. A G is called local antimagic if admits labeling. bijection $$f \colon E \to \{1,2,\ldots,q\}$$ labeling for any two adjacent vertices $$u$$ $$v$$ , we have $$f^+(u) \ne f^+(v)$$ where \sum_{e\in E(u)} f(e)$$ $$E(u)$$ the set edges incident to . Thus, induces proper vertex coloring assigned color $$f^+(v)$$ The chromatic number, denoted $$\chi_{la}(G)$$ minimum number induced colors taken over G. H disjoint graphs. join H, \vee H$$ with $$V(G\vee H) V(G) \cup V(H)$$ $$E(G\vee E(G) E(H) \{uv \mid u\in V(G)$$ $$v \in V(H)\}$$ In this paper, investigated $$\chi_{la}(G\vee H)$$ Consequently, show existence non-complete regular graphs arbitrarily large order, regularity numbers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

the locating chromatic number of the join of graphs

‎let $f$ be a proper $k$-coloring of a connected graph $g$ and‎ ‎$pi=(v_1,v_2,ldots,v_k)$ be an ordered partition of $v(g)$ into‎ ‎the resulting color classes‎. ‎for a vertex $v$ of $g$‎, ‎the color‎ ‎code of $v$ with respect to $pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_pi}(v)=(d(v,v_1),d(v,v_2),ldots,d(v,v_k))$‎, ‎where $d(v,v_i)=min{d(v,x):~xin v_i}‎, ‎1leq ileq k$‎. ‎if‎ ‎distinct...

متن کامل

Regular Graphs are Antimagic

In this note we prove with a slight modification of an argument of Cranston et al. [2] that k-regular graphs are antimagic for k ≥ 2.

متن کامل

The Chromatic Number of Random Regular Graphs

Given any integer d ≥ 3, let k be the smallest integer such that d < 2k log k. We prove that with high probability the chromatic number of a random d-regular graph is k, k + 1, or k + 2.

متن کامل

On Antimagic Labeling of Odd Regular Graphs

An antimagic labeling of a finite simple undirected graph with q edges is a bijection from the set of edges to the set of integers {1, 2, · · · , q} such that the vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it admits an antimagic labeling. It was conjectured by N. Hartsfield and G. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Hungarica

سال: 2023

ISSN: ['0001-5954', '0236-5294', '1588-2632']

DOI: https://doi.org/10.1007/s10474-023-01298-7