On join product and local antimagic chromatic number of regular graphs
نویسندگان
چکیده
Let $$G = (V,E)$$ be a connected simple graph of order p and size q. A G is called local antimagic if admits labeling. bijection $$f \colon E \to \{1,2,\ldots,q\}$$ labeling for any two adjacent vertices $$u$$ $$v$$ , we have $$f^+(u) \ne f^+(v)$$ where \sum_{e\in E(u)} f(e)$$ $$E(u)$$ the set edges incident to . Thus, induces proper vertex coloring assigned color $$f^+(v)$$ The chromatic number, denoted $$\chi_{la}(G)$$ minimum number induced colors taken over G. H disjoint graphs. join H, \vee H$$ with $$V(G\vee H) V(G) \cup V(H)$$ $$E(G\vee E(G) E(H) \{uv \mid u\in V(G)$$ $$v \in V(H)\}$$ In this paper, investigated $$\chi_{la}(G\vee H)$$ Consequently, show existence non-complete regular graphs arbitrarily large order, regularity numbers.
منابع مشابه
The locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملthe locating chromatic number of the join of graphs
let $f$ be a proper $k$-coloring of a connected graph $g$ and $pi=(v_1,v_2,ldots,v_k)$ be an ordered partition of $v(g)$ into the resulting color classes. for a vertex $v$ of $g$, the color code of $v$ with respect to $pi$ is defined to be the ordered $k$-tuple $c_{{}_pi}(v)=(d(v,v_1),d(v,v_2),ldots,d(v,v_k))$, where $d(v,v_i)=min{d(v,x):~xin v_i}, 1leq ileq k$. if distinct...
متن کاملRegular Graphs are Antimagic
In this note we prove with a slight modification of an argument of Cranston et al. [2] that k-regular graphs are antimagic for k ≥ 2.
متن کاملThe Chromatic Number of Random Regular Graphs
Given any integer d ≥ 3, let k be the smallest integer such that d < 2k log k. We prove that with high probability the chromatic number of a random d-regular graph is k, k + 1, or k + 2.
متن کاملOn Antimagic Labeling of Odd Regular Graphs
An antimagic labeling of a finite simple undirected graph with q edges is a bijection from the set of edges to the set of integers {1, 2, · · · , q} such that the vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it admits an antimagic labeling. It was conjectured by N. Hartsfield and G. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica Hungarica
سال: 2023
ISSN: ['0001-5954', '0236-5294', '1588-2632']
DOI: https://doi.org/10.1007/s10474-023-01298-7